You can Download Samacheer Kalvi 9th Maths Book Solutions Guide Pdf, Tamilnadu State Board help you to revise the complete Syllabus and score more marks in your examinations.

Tamilnadu Samacheer Kalvi 9th Maths Solutions Chapter 2 Real Numbers Ex 2.2

9th Maths Exercise 2.2 Samacheer Kalvi Question 1.
Express the following rational numbers into decimal and state the kind of decimal expansion.
(i) \(\frac { 2 }{ 7 }\)
(ii) \(-5 \frac{3}{11}\)
(iii) \(\frac { 22 }{ 3 }\)
(iv) \(\frac { 327 }{ 200 }\)
Solution:
(i) \(\frac { 2 }{ 7 }\)
9th Maths Exercise 2.2 Samacheer Kalvi Chapter 2 Real Numbers
\(\frac{2}{7}=0 . \overline{285714}\)
Nen-terminating and recurring

(ii) \(-5 \frac{3}{11}\)
9th Maths Exercise 2.2 In Tamil Samacheer Kalvi Chapter 2 Real Numbers
\(-5 \frac{3}{11}=-5 . \overline{27}\)
Nen-terminating and recurring

(iii) \(\frac { 22 }{ 3 }\)
9th Standard Maths Exercise 2.2 Samacheer Kalvi Chapter 2 Real Numbers
\(\frac{22}{3}=7 . \overline{3}\)
Nen-terminating and recurring

(iv) \(\frac { 327 }{ 200 }\)
9th Maths Exercise 2.2 Samacheer Kalvi Chapter 2 Real Numbers
\(\frac { 327 }{ 200 }\) = 1.635, Terminating.

9th Maths Exercise 2.2 In Tamil Question 2.
Express \(\frac { 1 }{ 13 }\) in decimal form. Find the length of the period of decimals.
Solution:
9th Maths 2.2 Samacheer Kalvi Chapter 2 Real Numbers
\(\frac{1}{13}=0 . \overline{076923}\) has the length of the period of decimals = 6.

9th Standard Maths Exercise 2.2 Question 3.
Express the rational number \(\frac { 1 }{ 13 }\) in recurring decimal form by using the recurring decimal expansion of \(\frac { 1 }{ 11 }\) . Hence write \(\frac { 71 }{ 33 }\) in recurring decimal form.
Solution:
The recurring decimal expansion of \(\frac { 1 }{ 11 }\) = 0.09090909…. = \(0.\overline { 09 }\)
Class 9 Maths Chapter 2 Real Numbers Samacheer Kalvi Ex 2.2

9th Maths Exercise 2.2 Question 4.
Express the following decimal expression into rational numbers.
(i) \(0.\overline { 24 }\)
(ii) \(2.\overline { 327 }\)
(iii) -5.132
(iv) \(3.1\overline { 7 }\)
(v) \(17.\overline { 215 }\)
(vi) \(-21.213\overline { 7 }\)
Solution:
(i) \(0.\overline { 24 }\)
Let x = \(0.\overline { 24 }\) = 0.24242424……… ….(1)
(Here period of decimal is 2, multiply equation (1) by 100)
100x = 24.242424 ………. ….(2)
(2) – (1)
100x – x = 24.242424…. – 0.242424….
99x = 24
x = \(\frac { 24 }{ 99 }\)

(ii) \(2.\overline { 327 }\)
Let x = 2.327327327…… …………. (1)
(Here period of decimal is 3, multiply equation (1) by 1000)
1000x = 2327.327… ……………. (2)
(2) – (1)
1000x – x = 2327.327327… – 2.327327….
999x = 2325
x = \(\frac { 2325 }{ 999 }\)

(iii) -5.132
\(x=-5.132=\frac{-5132}{1000}=\frac{-1283}{250}\)

(iv) \(3.1\overline { 7 }\)
Let x = 3.1777 ……. ………… (1)
(Here the repeating decimal digit is 7, which is the second digit after the decimal point, multiply equation (1) by 10)
10x = 31.7777 …….. …………. (2)
(Now period of decimal is 1, multiply equation (2) by 10)
100x = 317.7777…….. …………….. (3)
(3) – (2)
100x – 10x = 317.777…. – 31.777….
90x = 286
\(x=\frac{286}{90}=\frac{143}{45}\)

(v) \(17.\overline { 215 }\)
Let x = 17.215215 ……. ………. (1)
1000x = 17215.215215…… …………. (2)
(2) – (1)
1000x – x = 17215.215215… – 17.215…
999x = 17198
x = \(\frac { 17198 }{ 999 }\)

(vi) \(-21.213\overline { 7 }\)
Let x = -21.2137777… ……….. (1)
10x = -212.137777…… ……….. (2)
100x = -2121.37777…… ………… (3)
1000x = -21213.77777…. ……….. (4)
10000x = 212137.77777….. ………… (5)
(Now period of decimal is 1, multiply equation (4) it by 10)
(5) – (4)
10000x – 1000x = (-212137.7777…) – (-21213.7777…)
9000x = -190924
x = –\(\frac { 190924 }{ 9000 }\)

9th Maths 2.2 Question 5.
Without actual division, find which of the following rational numbers have terminating decimal expansion.
(i) \(\frac { 7 }{ 128 }\)
(ii) \(\frac { 21 }{ 15 }\)
(iii) 4\(\frac { 9 }{ 35 }\)
(iv) \(\frac { 219 }{ 2200 }\)
Solution:
(i) \(\frac { 7 }{ 128 }\)
Exercise 2.2 Class 9 Maths Solutions Samacheer Kalvi Chapter 2 Real Numbers
So \(\frac{7}{128}=\frac{7}{2^{7} 5^{0}}\)
This of the form 4m, n ∈ W
So \(\frac { 7 }{ 128 }\) has a terminating decimal expansion.

(ii) \(\frac { 21 }{ 15 }\)
9th Maths Real Numbers Samacheer Kalvi Chapter 2 Ex 2.2
So \(\frac { 21 }{ 15 }\) has a terminating decimal expansion.

(iii) 4\(\frac { 9 }{ 35 }\) = \(\frac { 149 }{ 35 }\)
9th Class Maths Exercise 2.2 Samacheer Kalvi Chapter 2 Real Numbers
\(\frac{49}{35}=\frac{149}{5^{1} 7^{1}}\)
∴ This is not of the form \(\frac{p}{5^{1} 7^{1}}\)
So 4\(\frac { 9 }{ 35 }\) has a non-terminating recurring decimal expansion.

(iv) \(\frac { 219 }{ 2200 }\)
Maths 9th Class Chapter 2 Real Numbers Samacheer Kalvi Ex 2.2
\(\frac{219}{2200}=\frac{219}{2^{3} 5^{2} 11^{1}}\)
∴ This is not of the form \(\frac{p}{2^{m} 5^{n}}\)
So \(\frac { 219 }{ 2200 }\) has a non-terminating recurring decimal expansion.