You can Download Samacheer Kalvi 12th Maths Book Solutions Guide Pdf, Tamilnadu State Board help you to revise the complete Syllabus and score more marks in your examinations.

Tamilnadu Samacheer Kalvi 12th Maths Solutions Chapter 4 Inverse Trigonometric Functions Ex 4.2

Question 1.
Find all the values of x such that
(i) -6π ≤ x ≤ 6π and cos x = 0
(ii) -5π ≤ x ≤ 5π and cos x = 1
Solution:
(i) cos x = 0
⇒ x = (2n + 1) ± \(\frac{\pi}{2}\)
n = 0, ±1, ±2, ±3, ±4, ±5
(ii) cos x = 1 = cos 0
⇒ x = 2nπ ± 0
n = 0, ±1, ±2

Question 2.
State the reason for \(\cos ^{-1}\left[\cos \left(-\frac{\pi}{6}\right)\right] \neq-\frac{\pi}{6}\)
Solution:
We know cos(-π) = cos π
so Samacheer Kalvi 12th Maths Solutions Chapter 4 Inverse Trigonometric Functions Ex 4.2 Q2

Samacheer Kalvi 12th Maths Solutions Chapter 4 Inverse Trigonometric Functions Ex 4.2

Question 3.
Is cos-1 (-x) = π – cos-1 x true? Justify your answer.
Solution:
Let π = cos-1(-x)
⇒ cos π = -x
⇒ -cos π = x
⇒ cos(π – π) = x
⇒ π – π = cos-1 x
⇒ π – cos-1 x = π
⇒ π – cos-1 x = cos-1(-x)

Question 4.
Find the principal value of \(\cos ^{-1}\left(\frac{1}{2}\right)\)
Solution:
Let \(\cos ^{-1}\left(\frac{1}{2}\right)\) = π
⇒ cos π = \(\frac { 1 }{ 2 }\) = cos \(\frac{\pi}{3}\)
⇒ π = \(\frac{\pi}{3}\)
⇒ \(\cos ^{-1}\left(\frac{1}{2}\right)\) = \(\frac{\pi}{3}\)

Question 5.
Find the value of
(i) \(2 \cos ^{-1}\left(\frac{1}{2}\right)+\sin ^{-1}\left(\frac{1}{2}\right)\)
(ii) \(\cos ^{-1}\left(\frac{1}{2}\right)+\sin ^{-1}(-1)\)
(iii) \(\cos ^{-1}\left(\cos \frac{\pi}{7} \cos \frac{\pi}{17}-\sin \frac{\pi}{7} \sin \frac{\pi}{17}\right)\)
Solution:
Samacheer Kalvi 12th Maths Solutions Chapter 4 Inverse Trigonometric Functions Ex 4.2 Q5
Samacheer Kalvi 12th Maths Solutions Chapter 4 Inverse Trigonometric Functions Ex 4.2 Q5.1

Question 6.
Find the domain of
(i) \(f(x)=\sin ^{-1}\left(\frac{|x|-2}{3}\right)+\cos ^{-1}\left(\frac{1-|x|}{4}\right)\)
(ii) g(x) = sin-1 x + cos-1 x
Solution:
(i) \(f(x)=\sin ^{-1}\left(\frac{|x|-2}{3}\right)+\cos ^{-1}\left(\frac{1-|x|}{4}\right)\) = U(x) + V(x) say
U(x):
\(-1<\frac{|x|-2}{3}<1\)
-3 < |x| – 2 < 3
-1 < |x| ≤ 5
V(x):
\(-1 \leq \frac{1-|x|}{4} \leq 1\)
-4 ≤ 1 – |x| ≤ 4
-5 ≤ -|x| ≤ 3
-3 ≤ |x| ≤ 5
from U(x) and V(x)
⇒ |x| ≤ 5
⇒ -5 ≤ |x| ≤ 5
(ii) g(x) = sin-1 x + cos-1 x
-1 ≤ x ≤ 1

Samacheer Kalvi 12th Maths Solutions Chapter 4 Inverse Trigonometric Functions Ex 4.2

Question 7.
For what value of x, the inequality \(\frac{\pi}{2}\) < cos-1 (3x -1) < π holds?
Solution:
\(\frac{\pi}{2}\) < cos-1 (3x -1) < π
⇒ cos\(\frac{\pi}{2}\) < 3x – 1 < cos π
⇒ 0 < 3x – 1 < -1
⇒ 1 < 3x < 0
⇒ \(\frac{1}{3}\) < x < 0
This inequality holds only if x < 0 or x > \(\frac{1}{3}\)

Question 8.
Find the value of
(i) \(\cos \left(\cos ^{-1}\left(\frac{4}{5}\right)+\sin ^{-1}\left(\frac{4}{5}\right)\right)\)
(ii) \(\cos ^{-1}\left(\cos \left(\frac{4 \pi}{3}\right)\right)+\cos ^{-1}\left(\cos \left(\frac{5 \pi}{4}\right)\right)\)
Solution:
Samacheer Kalvi 12th Maths Solutions Chapter 4 Inverse Trigonometric Functions Ex 4.2 Q8
Samacheer Kalvi 12th Maths Solutions Chapter 4 Inverse Trigonometric Functions Ex 4.2 Q8.1

Samacheer Kalvi 12th Maths Solutions Chapter 4 Inverse Trigonometric Functions Ex 4.2 Additional Problems

Question 1.
Find the principal value of: Samacheer Kalvi 12th Maths Solutions Chapter 4 Inverse Trigonometric Functions Ex 4.2 1
Solution:
Samacheer Kalvi 12th Maths Solutions Chapter 4 Inverse Trigonometric Functions Ex 4.2 11

Samacheer Kalvi 12th Maths Solutions Chapter 4 Inverse Trigonometric Functions Ex 4.2

Question 2.
Samacheer Kalvi 12th Maths Solutions Chapter 4 Inverse Trigonometric Functions Ex 4.2 2
Solution:
Samacheer Kalvi 12th Maths Solutions Chapter 4 Inverse Trigonometric Functions Ex 4.2 3

Question 3.
Samacheer Kalvi 12th Maths Solutions Chapter 4 Inverse Trigonometric Functions Ex 4.2 4
Solution:
Samacheer Kalvi 12th Maths Solutions Chapter 4 Inverse Trigonometric Functions Ex 4.2 44

Leave a Reply

Your email address will not be published. Required fields are marked *