You can Download Samacheer Kalvi 11th Maths Book Solutions Guide Pdf, Tamilnadu State Board help you to revise the complete Syllabus and score more marks in your examinations.

## Tamilnadu Samacheer Kalvi 11th Maths Solutions Chapter 9 Limits and Continuity Ex 9.6

Choose the correct or the most suitable answer from the given four alternatives
Question 1. (a) 1
(b) 0
(c) ∞
(d) -∞
Solution:
(b) 0 Question 2. (a) 2
(b) 1
(c) -2
(d) 0
Solution:
(c) -2 Question 3. (a) 0
(b) 1
(c) 2
(d) does not exist
Solution:
(d) does not exist  Question 4. (a) 1
(b) -1
(c) 0
(d) 2
Solution:
(a) 1 Question 5. (a) e4
(b) e2
(c) e3
(d) 1
Solution:
(a) e4  Question 6. (a) 1
(b) 0
(c) -1
(d) $$\frac{1}{2}$$
Solution:
(d) $$\frac{1}{2}$$ Question 7. (a) log ab
(b) log $$\left(\frac{a}{b}\right)$$
(c) log $$\left(\frac{b}{a}\right)$$
(d) $$\frac{a}{b}$$
Solution:
(b) log $$\left(\frac{a}{b}\right)$$ Question 8. (a) 2 log 2
(b) 2 (log 2)2
(c) log 2
(d) 3 log 2
Solution:
(b) 2 (log 2))2 Question 9.
If f(x) = $$x(-1)^{ \left\lfloor \frac { 1 }{ x } \right\rfloor }$$, x ≤ θ, then the value of is equal to …………….
(a) -1
(b) 0
(c) 2
(d) 4
Solution:
(b) 0 Question 10. (a) 2
(b) 3
(c) does not exist
(d) 0
Solution:
(c) does not exist Limit does not exist

Question 11.
Let the function f be defined f(x) = then …………… Solution: Limit does not exist Question 12.
If f: R → R is defined by f(x) = $$\lfloor x-3\rfloor+|x-4|$$ for x ∈ R, then is equal to …………..
(a) -2
(b) -1
(c) 0
(d) 1
Solution:
(c) 0 Question 13. (a) 1
(b) 2
(c) 3
(d) 0
Solution:
(d) 0 Question 14.
If then the value of p is ………….
(a) 6
(b) 9
(c) 12
(d) 4
Solution:
(c) 12 Question 15. (a) $$\sqrt{2}$$
(b) $$\frac{1}{\sqrt{2}}$$
(c) 1
(d) 2
Solution:
(a) $$\sqrt{2}$$ Question 16. (a) $$\frac{1}{2}$$
(b) 0
(c) 1
(d) ∞
Solution:
(a) $$\frac{1}{2}$$  Question 17. (a) 1
(b) e
(c) $$\frac{1}{e}$$
(d) 0
Solution:
(a) 1 Question 18. (a) 1
(b) e
(c) $$\frac{1}{2}$$
(d) 0
Solution:
(a) 1 Question 19.
The value of is ……………
(a) 1
(b) -1
(c) 0
(d) ∞
Solution:
(d) ∞
Hint: So limit does not exist

Question 20.
The value of where k is an integer is …………..
(a) -1
(b) 1
(c) 0
(d) 2
Solution:
(b) 1  Question 21.
At x = $$\frac{3}{2}$$ the function f(x) = $$\frac{|2 x-3|}{2 x-3}$$ is ………….
(a) Continuous
(b) discontinuous
(c) Differentiate
(d) non-zero
Solution:
(b) discontinuous Question 22.
Let f: R → R be defined by f(x) = then f is ……………
(a) Discontinuous at x = $$\frac{1}{2}$$
(b) Continuous at x = $$\frac{1}{2}$$
(c) Continuous everywhere
(d) Discontinuous everywhere
Solution:
(b) Continuous at x = $$\frac{1}{2}$$ Question 23.
The function f(x) = is not defined for x = -1. The value of f(-1) so that the function extended by this value is continuous is …………..
(a) $$\frac{2}{3}$$
(b) $$-\frac{2}{3}$$
(c) 1
(d) 0
Solution:
(b) $$-\frac{2}{3}$$
Hint: For the function to be continuous at x = 1  Question 24.
Let f be a continuous function on [2, 5]. If f takes only rational values for all x and f(3) = 12, then f(4.5) is equal to ……………
(a) $$\frac{f(3)+f(4.5)}{7.5}$$
(b) 12
(c) 17.5
(d) $$\frac{f(4.5)-f(3)}{1.5}$$
Solution:
(b) 12 Question 25.
Let a function f be defined by f(x) = $$\frac{x-|x|}{x}$$ for x ≠ 0 and f(0) = 2. Then f is …………..
(a) Continuous nowhere
(b) Continuous everywhere
(c) Continuous for all x except x = 1
(d) Continuous for all x except x = 0
Solution:
(d) Continuous for all x except x = 0
Hint: ∴ f(x) is not continuous at x = 0
⇒ f(x) is continuous for all except x = 0